415 research outputs found

    Decision-Making to Diversify Farm Systems for Climate Change Adaptation

    Get PDF
    On-farm diversification is a promising strategy for farmers to adapt to climate change. However, few recommendations exist on how to diversify farm systems in ways that best fit the agroecological and socioeconomic challenges farmers face. Farmers' ability to adopt diversification strategies is often stymied by their aversion to risk, loss of local knowledge, and limited access to agronomic and market information, this is especially the case for smallholders. We outline seven steps on how practitioners and researchers in agricultural development can work with farmers in decision-making about on-farm diversification of cropping, pasture, and agroforestry systems while taking into account these constraints. These seven steps are relevant for all types of farmers but particularly for smallholders in tropical and subtropical regions. It is these farmers who are usually most vulnerable to climate change and who are, subsequently, often the target of climate-smart agriculture (CSA) interventions. Networks of agricultural innovation provide an enabling environment for on-farm diversification. These networks connect farmers and farmer organizations with local, national, or international private companies, public organizations, non-governmental organizations (NGOs), and research institutes. These actors can work with farmers to develop diversified production systems incorporating both high-value crops and traditional food production systems. These diversified farm systems with both food and cash crops act as a safety net in the event of price fluctuations or other disruptions to crop value chains. In this way, farmers can adapt their farm systems to climate change in ways that provide greater food security and improved income

    The future of coffee and cocoa agroforestry in a warmer Mesoamerica

    Get PDF
    Climate change threatens cofee production and the livelihoods of thousands of families in Mesoamerica that depend on it. Replacing cofee with cocoa and integrating trees in combined agroforestry systems to ameliorate abiotic stress are among the proposed alternatives to overcome this challenge. These two alternatives do not consider the vulnerability of cocoa and tree species commonly used in agroforestry plantations to future climate conditions. We assessed the suitability of these alternatives by identifying the potential changes in the distribution of cofee, cocoa and the 100 most common agroforestry trees found in Mesoamerica. Here we show that cocoa could potentially become an alternative in most of cofee vulnerable areas. Agroforestry with currently preferred tree species is highly vulnerable to future climate change. Transforming agroforestry systems by changing tree species composition may be the best approach to adapt most of the cofee and cocoa production areas. Our results stress the urgency for land use planning considering climate change efects and to assess new combinations of agroforestry species in cofee and cocoa plantations in Mesoamerica

    Conservation priorities for Prunus africana defined with the aid of spatial analysis of genetic data and climatic variables

    Get PDF
    Conservation priorities for Prunus africana, a tree species found across Afromontane regions, which is of great commercial interest internationally and of local value for rural communities, were defined with the aid of spatial analyses applied to a set of georeferenced molecular marker data (chloroplast and nuclear microsatellites) from 32 populations in 9 African countries. Two approaches for the selection of priority populations for conservation were used differing in the way they optimize representation of intra-specific diversity of P. africana across a minimum number of populations. The first method (Si) was aimed at maximizing genetic diversity of the conservation units and their distinctiveness with regard to climatic conditions, the second method (S2) at optimizing representativeness of the genetic diversity found throughout the species' range. Populations in East African countries (especially Kenya and Tanzania) were found to be of great conservation value, as suggested by previous findings. These populations are complemented by those in Madagascar and Cameroon. The combination of the two methods for prioritization led to the identification of a set of 6 priority populations. The potential distribution of P. africana was then modeled based on a dataset of 1,500 georeferenced observations. This enabled an assessment of whether the priority populations identified are exposed to threats from agricultural expansion and climate change, and whether they are located within the boundaries of protected areas. The range of the species has been affected by past climate change and the modeled distribution of P. africana indicates that the species is likely to be negatively affected in future, with an expected decrease in distribution by 2050. Based on these insights, further research at the regional and national scale is recommended, in order to strengthen P. africana conservation efforts

    Manuel de formation à l’analyse spatiale de la diversité et de la distribution des plantes

    Get PDF
    Ce manuel de formation est destiné aux chercheurs et étudiants qui travaillent avec des données sur la biodiversité et qui souhaitent développer des compétences pour mener à bien des analyses spatiales basées sur des applications SIG (gratuites) qui mettent l’accent sur les analyses écologiques et de la biodiversité. Ces analyses offrent une meilleure compréhension de la répartition spatiale de la diversité et de la distribution des plantes, contribuant ainsi à améliorer les efforts de conservation. Le manuel de formation se concentre sur les plantes d'intérêt permettant d’améliorer les moyens de subsistance (par exemple des cultures de bases, des arbres et des plantes sauvages apparentées) et / ou celles qui sont en voie de disparition. Les analyses spatiales de la diversité inter- et intra-spécifique sont expliquées en utilisant différents types de données: présence des espècesdonnées de caractérisation morphologiquedonnées moléculaires Bien que cette formation se concentre sur la diversité végétale, la plupart des types d'analyses décrits peuvent également être appliqués à d'autres organismes tels que les animaux et les champignons. Le manuel est basé sur des exercices spécifiques, utilisant les données de projets réelles. Pour utiliser pleinement le manuel, vous aurez besoin de télécharger les données pertinentes correspondant aux exercices (énumérés ci-dessous). Télécharger les données de l'exercice en un seul fichier (qui, par décompression, crée les différents dossiers utilisés dans le manuel): Seul fichier 2.1 Importation de données d'observation 5.2 Diversité - données phénotypiques 2.2 Importation de données climatiques 5.3 Diversité - données des marqueurs moléculaires 3.1 Eléments de base 5.4 Stratégies de conservation 3.2 Exporter vers Google Earth 6.1 Niche effective 4.1 Contrôle qualité - unités administratives 6.2 Distribution potentielle 4.2 Contrôle qualité - points atypiques 6.3 Changement climatique 5.1 Diversité des espèces 6.4 Analyse des lacunes Le manuel peut être utilisé pour l'auto-apprentissage ainsi que pour des activités de formation telles que des séminaires ou des cours de courte durée sur les aspects fondamentaux de l'analyse spatiale. Pour ens savoir plus:Mapping the ecogeographic distribution of biodiversity and GIS tools for plant germplasm collector

    Manual de capacitación en análisis espacial de diversidad y distribución de plantas

    Get PDF
    Como parte de su programa de fortalecimiento de capacidades y como resultado de estudios previos, Bioversity ha publicado un manual de entrenamiento para hacer análisis espacial de diversidad y distribución con herramientas de SIG, dirigido a estudiantes y profesionales que requieran analizar la biodiversidad y para facilitar la toma de decisiones. El manual se centra en plantas que las comunidades utilizan para su sustento (incluyendo cultivos, árboles y parientes silvestres), aunque los tipos de análisis que se introducen también se pueden aplicar a otros organismos como animales. El manual, disponible en inglés y español y próximamente en francés, se divide en seis capítulos agrupados en dos secciones. En la primera parte se introducen los programas y elementos para hacer los análisis y se explica cómo importar los datos. En la segunda parte se explica, paso a paso y con ejemplos, cómo hacer los análisis apoyándose en los programas disponibles y en datos de presencia de especies, y de caracterización morfológica y molecular. Los conjuntos de datos sobre las especies provienen de ejemplos de la vida real. Antes de utilizar el manual, el usuario debe descargar los datos relevantes para cada ejercicio, disponibles aquí abajo: single file 2.1 Importing observation data5.2 Diversity - Phenotypic data2.2 Importing climate data5.3 Diversity - Molecular marker data3.1 Basic elements5.4 Conservation strategies3.2 Export to Google Earth6.1 Realized niche4.1 Quality control – Administrative units6.2 Potential distribution4.2 Quality control – Atypical points6.3 Climate change5.1 Species diversity6.4 Gap analysis El manual se puede usar para auto aprendizaje o para eventos de formación, sean éstos cursos cortos o seminarios para aprender sobre los fundamentos del análisis espacial. Para más información, ver:Mapping the ecogeographic distribution of biodiversity and GIS tools for plant germplasm collector

    Present spatial diversity patterns of Theobroma cacao L. in the neotropics reflect genetic differentiation in Pleistocene refugia followed by human-influenced dispersal

    Get PDF
    Cacao (Theobroma cacao L.) is indigenous to the Amazon basin, but is generally believed to have been domesticated in Mesoamerica for the production of chocolate beverage. However, cacao's distribution of genetic diversity in South America is also likely to reflect pre-Columbian human influences that were superimposed on natural processes of genetic differentiation. Here we present the results of a spatial analysis of the intra-specific diversity of cacao in Latin America, drawing on a dataset of 939 cacao trees genotypically characterized by means of 96 SSR markers. To assess continental diversity patterns we performed grid-based calculations of allelic richness, Shannon diversity and Nei gene diversity, and distinguished different spatially coherent genetic groups by means of cluster analysis. The highest levels of genetic diversity were observed in the Upper Amazon areas from southern Peru to the Ecuadorian Amazon and the border areas between Colombia, Peru and Brazil. On the assumption that the last glaciation (22,000-13,000 BP) had the greatest pre-human impact on the current distribution and diversity of cacao, we modeled the species' Pleistocene niche suitability and overlaid this with present-day diversity maps. The results suggest that cacao was already widely distributed in the Western Amazon before the onset of glaciation. During glaciations, cacao populations were likely to have been restricted to several refugia where they probably underwent genetic differentiation, resulting in a number of genetic clusters which are representative for, or closest related to, the original wild cacao populations. The analyses also suggested that genetic differentiation and geographical distribution of a number of other clusters seem to have been significantly affected by processes of human management and accompanying genetic bottlenecks. We discuss the implications of these results for future germplasm collection and in situ, on farm and ex situ conservation of cacao

    Diversity and conservation of traditional African vegetables: Priorities for action

    Get PDF
    © 2020 The Authors. Diversity and Distributions published by John Wiley & Sons Ltd.Aim: Traditional African vegetables have high potential to contribute to healthy diets and climate resilience in sub-Saharan African food systems. However, their genetic resources are likely at threat because they are underutilized and under the radar of agricultural research. This paper aims to contribute to a conservation agenda for traditional African vegetables by examining the geographical diversity and conservation status of these species. Location: Sub-Saharan Africa. Methods: 126 traditional annual and perennial African vegetables were selected for their food and nutrition potential. Food uses and species’ areas of origin were recorded from literature. Species’ presence records were collected from open-access databases of genebanks and herbaria. These records were used to determine geographical patterns of observed and modelled richness, to distinguish geographical clusters with different compositions of vegetables, to assess species’ ex situ and in situ conservation status and to prioritize countries for conservation actions. Results: Of the 126 species, 79 originated in sub-Saharan Africa. High levels of observed and modelled species richness were found in: (a) West Tropical Africa in Ghana, Togo and Benin; (b) West-Central Tropical Africa in South Cameroon; (c) Northeast and East Tropical Africa in Ethiopia and Tanzania; and (d) Southern Africa in Eswatini. South Sudan, Angola and DR Congo are potential areas of high species richness that require further exploration. In general, ex situ conservation status of the selected species was poor compared to their in situ conservation status. Main conclusions: Areas of high species richness in West Tropical Africa, South Cameroon and Ethiopia coincide with centres of crop domestication and cultural diversity. Hotspots of diversity in Tanzania and Eswatini are especially rich in wild vegetables. Addressing the conservation of vegetable diversity in West Tropical Africa and South Cameroon is of most urgent concern as vegetable genetic resources from these locations are least represented in ex situ collections.publishedVersio
    • …
    corecore